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Abstract— This paper presents a long-term dynamic multi-objective model for distributed
generation investment. The proposed model optimizes three objectives, namely active losses, costs
and environmental emissions and determines the optimal schemes of sizing, sitting of DG units
and specially the dynamics of investment over the planning period. The Pareto optimal solutions of
the problem are found using a GA algorithm and finally a fuzzy satisfying method is applied to
select the optimal solution considering the desires of the planner. The solutions of Pareto optimal
front are analyzed to extract general useful information for planners about the appropriate DG
technologies and placement schemes. The effectiveness of the proposed model is demonstrated by
applying it on a test distribution system and the results are presented, discussed and compared to
other methods.
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1. INTRODUCTION

With the introduction of restructuring concepts to traditional power systems, a great deal of attention has
been given to utilization of distributed generations. DG is defined as all small generators, typically ranging
from 15 to 10000 KW, scattered throughout a power system, to provide the electric power needed by
customers [1]. In most power systems, a large portion of electricity demand is supplied by large-scale
generators; this is because of the economic advantages of these units over small ones. However, in the last
decades, technological innovations and a changing economic and regulatory environment have resulted in
a renewed interest for DG units [2]. A study by the Electric Power Research Institute (EPRI) indicates that
by 2010, 25% of the new generation will be distributed. The Natural Gas Foundation has concluded that
this figure could be as high as 30% [3]. There are five major factors behind this trend [4]: electricity
market liberalization, development in DG technology, constraints on the construction of new transmission
lines, reliability enhancement and concerns about environmental aspects. In addition to those indicated
before, there are other important benefits in using DG units in distribution systems. In liberalized
electricity markets distribution companies (DISCOs) are responsible for supplying the customers in their
territory. Since only a fixed percent of their losses are compensated, the loss reduction increases their
profits [5]-[7]. Another important factor which has become more important in the liberalized electricity
industry is the quality of the service which DISCO provides to its customers like voltage control [8] or
reliability [9]. With the increasing demand and potential congestion problems, it is necessary to upgrade
the distribution network facilities to meet the current and future needs. Any deferral to these unavoidable
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costs would be beneficial [10]. Additionally, other costs should be taken into account like the cost of
purchased energy, cost of energy losses and cost of energy not supplied [11], and the different costs
associated with the incorporation of DG units into the distribution systems like installation, operation and
maintenance costs. Some restrictions on environmental pollution may force the DISCOs to use green
power or less pollutant technologies. On the other hand, there will be a trade off between the costs
associated with utilization of DG units and the mentioned technical and economical (like purchasing the
power of DG to main grid [12]) gains.

The reported models for DG planning can be divided into two major categories: static and dynamic
models. In static models, investment decisions are implemented in the first year of the planning horizon
[5]-[7], [11], [13]-[22]. In this category, the models are single or multi-objectives. The single-objective
models are either originally single-objective [5]-[6], [13]-[16], [18], or multi-objective which are
converted into a single-objective (using a benefit to cost ratio index [17] or an additive utility function [7],
[11], [20], [22]); multi-objective models of this category are solved using Pareto optimality concept [19],
[21].

This paper proposes a multi-objective model for integration of DG units in a deregulated
environment. The proposed model aims to cover all three aspects of the DG planning problem, i.e., sitting,
sizing and timing of investment simultaneously when active losses, costs and emissions of the proposed
plans and a variety of DG technologies are considered. A genetic algorithm is proposed for finding the
Pareto optimal front and then a fuzzy satisfying method is used for selecting the final solution. The rest of
this paper is organized as follows: The principles of multi-objective optimization are discussed in section
2. A brief introduction to Genetic Algorithm is given in section 3. In section 4, problem formulation is
introduced and discussed. The proposed algorithm is presented in section 5. Section 6 introduces the fuzzy
satisfying method applied in this paper. Simulation results and conclusions are given in section 7, 8
respectively.

2. PRINCIPLES OF MULTIOBJECTIVE OPTIMIZATION

In most realistic optimization problems, particularly those applicable in power systems, there exists more
than one objective function which should be optimized simultaneously. Generally, every multi-objective
optimization problem consists of a number of objectives and several equality and inequality constraints
which can be formulated as follows:

Min F)=[f,x) .fy, ()]
Subject to :{G(x)=0, H(x)<0} (1
X =x,...x,]

The notion of optimum has been redefined in this context and instead of aiming to find a single solution,
we attempt to produce a set of good compromises or trade-offs, from which the decision maker will select
one. The set of all optimal solutions which are non-dominated by any other solution is known as Pareto-
optimal set. Each solution in Pareto optimal set has two basic characteristics: 1) For every two solutions
belonging to the same Pareto front (2) holds:

Vi |3j.n:f,E)>f, (&)

x,,x; €S

)

This means for every solution belonging to Pareto front S, at least one solution exists as which is better
than at least in one objective function (named n here). In other words, there is no solution in Pareto
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optimal front which is the best among all members of this set considering all objectives. 2) For every
solution belonging to an upper Pareto front and the ones in the lower fronts, (3) holds:

Vk e{l...N,}f, (x))<f, (x3) 3)
kel N}, (X)) <[, (X))
x,eS.x,eS’ Q)
S <S’

The classical approach for finding the Pareto optimal set is a preference-based method in which a relative
preference vector is used to weight the objectives and change them into a scalar value [23]. By converting
a multi-objective optimization problem into a single objective one, only one optimum solution can be
achieved that is very sensitive to the given weights. Evolutionary algorithms seem particularly suitable to
solve multi-objective optimization problems, because they deal simultaneously with a set of possible
solutions (the so-called population). This allows the decision maker to find several optimal solutions
(Pareto optimal set) in a single run, instead of having to perform a series of separate runs as in the case of
the traditional mathematical methods. To do this, many heuristic algorithms have been proposed like
NSGAII [24], PSO [25] and Tabu search [26]. In all of these algorithms an initial population is created
and then guided toward the Pareto front. The ultimate goal is to seek the most preferred solution among
the Pareto optimal set. In this paper this is done by using a fuzzy satisfying method which will be
discussed in section 6.

3. OVERVIEW OF GENETIC ALGORITHM

The Genetic Algorithm (GA) is a computational model which is designed to simulate processes in natural
systems necessary for evolution. It follows the principles which were first introduced by Holland [27]. GA
has been used in many power system applications such as power system planning [28] and unit
commitment [29]. Each population is a vector containing zeros and ones named genes. They specify the
behavior of the population. After creation of individuals, they will enter into an evolution process. The key
point of this stage is that the survival of each individual is dependent on its strength. The algorithm
involves three operators named:

a) Selection

The better individuals are more preferred, so they are allowed to pass on their characteristics to the
next generation. It must be noted that the criteria to distinguish between strong and weak generations is
their performance.

b) Crossover

Two individuals are chosen from the population using the selection operator. A number of bits
(genes) are randomly chosen from each parent. The values of the selected bits are exchanged. Two
newborn children will enter to the next generation of the population.

¢) Mutation

A portion of the new individuals must be selected with some low probability and then they will
change some of their bits in random. Mutation is a chance given to the children of weak parents for living.
It means that the children of a weak couple might be strong people in the future. Actually, it prevents the
algorithm of being trapped into a local minima or maxima.
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4. PROBLEM FORMULATION

Distributed generation planning consists of various linear and nonlinear sub-problems. The main problem
is proposing a plan which maintains the technical constraints and minimizes the total associated costs,
emissions and active losses with such a plan. The DISCO, as the planner, has two alternatives to supply its
customers, the first one is purchasing energy from the main grid and the second option is using DG in its
territory or an optimum combination of them. The aim of the distribution system planner is to seek the
best configuration among some available DG categories, and place them on suitable buses considering
various factors such as active power losses, investment and operation costs and environmental emissions.
The following assumptions are employed in problem formulation:

a) Decision variables

The multi-objective DG planning problem is formulated in this section. The decision variable is the
dg

number of DG units from each specific technology to be installed in each bus in each year, i.e., ¢; ¢ , and

the generation schedule of installed DGs during different load levels.
b) Constraints

1) Modeling the DG connection: Connection of a DG unit to a bus is modeled as a negative PQ load as

shown in Fig. 1.

Bus1 Busi

PDG] + JQD(;I

—0

P pa, T J QDGn

>

A\
L =P+ jQ, Z; Z[P: _JZI:PDGJ]-i_J.[QI _JZ:I:,QDGJ ]

L=F + JQ:’
Fig. 1. Model of the DG unit connected to the ith bus

2) Demand level factors and their durations: For getting closer to reality, it is assumed that each day can
be divided into different demand levels. Without loss of generality, in this paper three different demand
levels namely, Low, Medium and High have been considered which have different demand level factors,
i.e. DLEF, . The duration of each load level will be equal to DU, . The variation of demand level factor in

different demand levels in a 24 hour period is depicted in Fig. 2.
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Fig. 2. Demand level factors in 24 hours

3) Demand growth: The demand of a system is not constant during the planning horizon and it increases
with a rate called yearly demand growth, i.e. a. The demand at each bus, in each load level and each year
can be calculated using (5).

D D P
P[,t,d/ =Pi,ba,ve X(1+a) XDLFd/

Qil,)l,d/ =0/ .x(+a) xDLF,

i base

&)

4) Variations of energy price: Obviously the price of purchased energy from a grid is competitively
determined and is not constant during different load levels. Forecasting the variation of this parameter
would not be an easy job but it is assumed that the variation pattern of this parameter can be modeled by a
factor named grid price level factor, i.e. PLF,, . Without loss of generality, it is assumed that an electricity
price at each demand level can be calculated as p x PLF,;, where the base price (i.e. p) and PLF;, are
known; The variation of grid price demand factor in different load levels during a 24 hour day is depicted
in Fig. 3.

Grid Price Factor: ratio of price in Peak load
o
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:
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Fig. 3. Price level factors over 24 hours

5) Operating limits of DG units: Each DG should be operated considering its operating limits, i.e.:
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Pta < Pi ©6)
6) Voltage profile: The voltage magnitude of each bus should be kept between the safe operation limits, as

indicated in (7).

min

V i SI/i,l,d/ SI/max (7)

7) Thermal limit of feeders and substation: To maintain the security of the feeders and the substation, the
flow of current/energy passing through them should be kept below the feeders/substation capacity limit, as
follows:

1 £l
]t,dl < Imax

St < g &

max

®)

8) Power flow constraints: Besides the economic assumptions and calculations made up to now, it is
necessary that the technical constraints are also satisfied. The most viable constraints are well known
power flow equations that shall be satisfied for each configuration and load level as indicated in (9).

‘
net _ _pbh dg dg
Pztdl = Pi,t,dl +Z§,r' XPi,t,dl
o

{
net D dg dg
Qi,t,dl - _Qi,t,dl +Z§i,t' >Qi,t,dl
=
l 9
n
net _ _
Pztdl _Vi,t,d] ZYj]’V‘]’,t,dl COS(é",r,dz 5;,:,‘11 0 )

i ij
J=1

n
net __ .
O a =Viia ZYUVj,z,dlSln(é;,t,dl _é},t,dl _ez'j)
=

C. Objective functions

The proposed model minimizes three objective functions, namely, active losses, total costs and total
emissions, as follows:
Min {OF,.OF,,0F)
Subjec to
5)—>0©

The objective functions are formulated next.

1) Active Losses: Distribution systems are usually designed with just one supply source and this may
cause significant active losses. The active losses mainly depend on the line resistance and currents and are
usually referred to as thermal losses. While the line resistances are fixed, the currents are a complex
function of the system topology and the location of DG units and system demand level. The total active
energy dissipated during the planning horizon is calculated as follows:

I Ny
OF, =TAL =Y » AL, ,*xDU, (10)
t=1 di =1

2) Total Costs: The second objective function, i.e., OF’,, to be minimized is the total costs which include
the cost of electricity purchased from the grid, the installation costs and the operating costs of the DG
units. The cost of purchasing electricity from the grid can be determined as:
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T Ny
GC = > Y P%?xDU, x px PLF, x;t (11)
—d= (1+d)

Installation costs of the DG units can be calculated as:

r N
h 1
DGIC = “IC, x——— 12
;;fl,f dg (1+d)r ( )
The variable costs of the DG units can be calculated as:
T Ny Ng ! 1
DGVC = Y 3 > DU, x(FC,, +OMC,, )x(z E® jxp,ifl X (rd) (13)
=1 il di| =l | +

Thus, OF, is defined as:
OE,=DGIC+DGVC+TGC (14)

3) Total Emissions: The third objective function, i.e., OF3, is the total CO2 produced by the DG units and
the main grid. OF3 can be formulated as:

t=I di =1

T Ny Ny
0F3:ZZDUMX[EE;MXR[,Z+ZEngXPziltg,d/j (15)
=

5. PROPOSED ALGORITHM]
a) Parameterization of problem for GA

To solve the DG planning problem through genetic algorithm, problem parameters must be modeled

in terms of genetic parameters:

1) In the proposed problem each solution is a matrix containing binary values. Each row is related to
one DG. The first column determines whether this DG should be installed or not. The next column
determines the year of installation. The third column demonstrates the location of the DG unit in
the distribution network. The rest of the columns specify the operating schedule of the DG unit in
different demand levels. A sample solution vector is shown in Fig. 4.

Operating Schedule

Yea Bu ﬁ

DG # w—pp

1Installati0n

Fig. 4. Proposed vector for modeling the Problem Parameters X )
2) Population: A population consists of a number of solutions in the search space.

Population = [)_(1 )_(2 )_(p )_(NS ]
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a) Determination of Pareto front

As stated before, to direct the population toward the Pareto optimal front two things shall be noted:

1) Getting closer to Pareto optimal front

2) Maintaining the diversity among the solutions
In single objective optimization it is easily done because there is no need to diversify the solutions and
also just one objective function shall be considered for guiding the population. To solve this problem a
pseudo fitness value is assigned to each solution as (16).

Pseudo, = FN ' +GD, (16)

The first term in (16) guides the population toward the Pareto optimal front since the solutions that are
members of lower fronts get higher fitness, while the second term insures the diversity among the
solutions. It is calculated as follows: A local diversity factor is defined according to each objective
function then a global diversity factor is introduced. For every objective function, solutions are sorted and
the distance between the maximum and minimum is calculated using (17)

MD, =maxf, (x;)-minf, (x,) a7

As the solutions are sorted, the first and the last one are their max and min. The diversity of every other
solution is its average distance to its neighbors as shown in (18).

_ |fk()?i)-fk()?i 1)|+|f1f(fi)'f1f(fi.1)|
2MD, (18)

LD,
2N,k =1: N,
For the first and the last solution local diversity can be calculated using (19)

LD]s =LD] = max LD, (19)

i=2Ng-1

The global diversity factor for each solution is calculated as the average of its local diversities as shown in
(20).

N, i
GD, :ZLD k (20)
k=1 N()

¢) Steps of the algorithm

After analyzing the problem and selecting a proper expression of solution, the topology of the algorithm is
as follows:

1) Generate an initial random solution.

2) Set iteration =1.

3) Evaluate the fitness for each member of the population as follows: Convert the binary solution into a
decimal number. Evaluate each individual of the population by performing load flow calculations to
compute energy loss, total emission and total costs.

4) Determine the Pareto front and the global diversity factor for each solution.

5) Compute pseudo fitness for each solution.

6) Sort the population based on the pseudo fitness value. Keep the population length limited to IV, .

7) If the stopping criterion is met go to step 16, if not, continue.
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8) Consider a predefined top percent of the population as the potential parents (elite set) based on their
pseudo fitness.

9) Select two parents from the elite set based on the roulette wheel method.

10) Perform crossover and generate two children.

11) Mutate these two children based on mutation probability.

12) If still more children are needed, go to 9, if not, continue.

13) Combine the old population and new population to create a single population containing the bests of
both.

14) Set iteration = iteration +1.

15) Return to Step 3.

16) End

The flowchart of the proposed algorithm is depicted in Fig.5.
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Fig. 5. Flowchart of genetic algorithm
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6. FUZZY SATISFYING METHOD

The next step after obtaining the Pareto front is to select the solution among the candidates. A fuzzy
satisfying method has been used to obtain the satisfactory solution for the decision maker from the Pareto
optimal set. For each solution in the Pareto optimal front, like X, a membership function is defined as
4, (X;). This value shows the level in which X belongs to the set that minimizes the k™ objective
function. The value of He (X.) varies between zero to one. The membership value of”0” indicates
incompatibility with the set, while”’1”” means full compatibility.

In other words, the membership function gives a numerical description of how the decision maker is
satisfied by which level of achievement of solution, with respect to a specific objective function. The
decision maker is fully satisfied with xi if He (X,)=1 and dissatisfied when He (X,)= 0 [30]. Different
types of membership functions have been suggested like linear or exponential ones. The question is how
the planner can select a suitable type of membership function. It should be noted that in this paper the
decision making is posteriori not a priory one. This means that no preference should be given to
optimizing any objective function before finding the Pareto optimal front. If an exponential membership
function is chosen for one of the objectives functions, then it is given priority for minimizing that
objective relative to the other objective because this function will assign a smaller membership function in
the vicinity of the maximum value of that objective compared to linear type [28]. Here, a linear type of
membership function has been used for all objective functions as shown in (21).

0 _ M,
Ve, g [0 >

00 = g i 0 @D
i ; i fl(X_) <fiMin

Figure 6 shows the selected membership function

A )

»f,-(i)

f min f max
i i

Fig. 6. Linear type membership function

After defining the membership functions there are several ways to choose the final solution. Each method
considers a different philosophy. The method used in this paper is introduced as follows: As the planners
will live with their plans, a conservative decision can be achieved by trying to find the solution of which
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its Minimum satisfaction is maximum over all objective functions. Using the Max-Min formulation, the

final solution can be found by solving (22).

7. SIMULATION RESULTS

The proposed algorithm is applied to a 33 bus test feeder [33] with slight modifications, which is shown in
Fig.7. In the performed simulations, it is assumed that all buses are candidates for DG installation and
more than one DG can be installed in a specific bus. The proposed framework can be used for different

technologies and operation and planning philosophies.

1)
2)
3)
4)

S)

6)

7)

8)
9)

01
19
20 23
21 4
2 25
Legend
B Sybstation
= Bus
: 16
—Line
17
18

Fig. 7. Single line diagram of the distribution system under study

Here, without loss of generality, the assumptions used in this work are listed:
The planning horizon (T) is 10 years.
The discount rate (d) is assumed to be 12.5%
Transmission system limitation for energy delivery is Srﬁid =200MV A.
The demand growth in each year of planning horizon can be different; it is assumed that it is
similar in each year and a = 3%.
The characteristics of different DG technologies [31], [32] used in this paper are available in
Table 1.
The duration of low, medium and high demand level in each day are assumed to be 8,12.4 hours,
respectively. So the duration of these load levels in a year will be multiplied by 365. These are
given in Table 2.
Variations of demand and Grid price are given in Table 2.
Emission factor of main grid E_,,  is assumed to be 672 Kg/MWh.
Cost of active power, i.e. p in medium demand level is assumed to be 60$/MWh.

10) Maximum and minimum voltage for each bus is assumed to be V. __ = 1.05pu, V. = 0.9pu.
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11) Cross over probability =70%

12) Mutation probability =5%

13) Number of population = 100.

14) Stopping criteria: Max iteration =1000.

Table 1. Characteristics of the dg units [31], [32]

kgCo k
DG Size (MVA) £9C0 | 1o K5 oo 2 | pe. | cose | pot
Technology Mwh “ mMvA 9 MWh 9 MWh
i 0.03 801 1485 75 15 0.9 1
1ero 0.07 719 1485 75 15 0.9 2
Turbine
0.1 696 1485 75 15 0.9 3
0.075 531 3674 29 10 1 4
Fuel Cell 0.02 531 3674 29 10 1 5
0.1 531 3674 29 10 1 6
Combustion 1 774 715 67 6 0.9 7-8
Turbine
Table 2. Data used in the study
Demand Levels| DU , (hour )| DLF, | PLF,
Low 2920 0.8 |0.85
Medium 4380 1 1
High 1460 1.3 | 1.45

The formulated problem was solved and 97 Pareto optimal solutions were found by the algorithm. The
Pareto optimal front is depicted in Fig. 8.
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OF, (kg CO,)
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Fig. 8. Pareto Optimal front for three objectives
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a) Finding pareto front and selecting final solution

Now the planner has a range of solutions instead of just only one solution. He can decide what to
choose based on his requirements. In order to make the comparison more sensible, a Do Nothing Case
(DNC) is also added in which no DG option is available for the planner. The variation range of each
objective function in the Pareto optimal front is calculated and given in Table. 3. Some of the obtained
solutions are given in Table 4. These solutions can be categorized and each category has some special
features and the planner can choose the best solution based on its preferences over different objective
functions. For example, if the planner is interested in minimizing all objective functions simultaneously,
then solution # 55 is the best option. The details of this solution are given in Table 5. Two Micro turbines
are installed in bus 18 and 33 in year 4 and 5, simultaneously. Two combustion turbines are installed in
bus 13 and 33, both in the first year. Four Fuel cells should be installed in the network. Three of them are
installed in the first year and one of them in year 8. If the planner is just interested in only two of the
objective functions then solution B, C and D are the best ones. For example, if the planner is only
interested in minimizing the OF2 and OF3, then solution D is the best option for the planner.

Table 3. Variation range of objective function for all solutions in Pareto optimal front

OF,(kg CO,) | OF($) | OF(MWh)

£ 2.796x10° 1.950%10° 1.446x10*

£ 2.875x10° 2.031x10° 5.965x10"
DNC 2.900x10° 2.123x10° 7.568x10"

Table 4. Some of the solutions of the Pareto optimal front

OF, OF, | OF;
Case Method Solution # Hs, He He
(Mwh) | (k$) | (Ton CO,)
A | max(min,_, (4, ) 55 29597 | 197990 | 2824000 | 0.6651 | 0.6403 | 0.6524
B | max(min,_,,(x )) 43 29846 | 197880 | 2825400 | 0.6569 | 0.6550 | 0.6345
¢ | max(min,_ (4, )) 5 14652 | 202930 | 2796400 | 0.9958 | 0.0282 1
D | max(min,_, (4 )) 66 30484 | 197780 | 2824900 | 0.6454 | 0.6674 | 0.6403

Table 5. The investment plan obtained for case a

DG Number of Installed DG | Size (MVA) | Year | Bus

Technology

Micro 1 0.07 4 18

Turbine 1 0.1 5 33

Combustion 1 1 1 33

Turbine 1 1 1 13

2 0.02 1 11

Fuel Cell | 0.075 8 28

| 0.02 1 33

b) Comparing to other heuristic methods and discussing the results

In order to verify the ability of the proposed algorithm it is compared to two other heuristic methods.
The comparison is made between the Particle Swarm Optimization (PSO) [34], Tabu search [26] and the
proposed method. Two factors have been monitored, the first one is the number of Pareto optimal
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solutions found by the algorithm, and also the running time in a number of specified iterations. The
Windows-based PC used for the test is equipped with an Intel Core 2 Duo CPU, 2.4GHz, 1 GB RAM. The
results of the comparison are given in Table 6. As it is given in Table. 6, the speed of PSO is higher than
the Tabu search method, but it will find fewer Pareto optimal solutions. On the other hand, the proposed
method finds more Pareto optimal solutions and rusts faster. In this paper, the Newton Raphson method is
used for solving load flow equations and that is why the running time might seem too long but, since the
calculation process is offline, it will not cause a problem for larger distribution networks or more demand
levels. Additionally, using techniques developed for radial load flow [35], calculations can reduce the
running time.

Table 6. Comparing the proposed method with other heuristic methods

Method Running time (min) | # of Pareto Optimal solutions
Tabu Search [26] 394 82
PSO [34] 262 75
Proposed method 186 97

¢) Analyzing the Pareto front

The proposed model can be directly used in the power market model in which the DISCO is
responsible for DG integration in the network. However, in power market models where the DG
investment is done by independent investors instead of DISCO, the provided information would also be
useful as an economical and environmental signal for regulators. It can be used for regulating the
incentives to encourage the private sector to invest in a particular DG technology, and understanding
where it would be more beneficial. The frequency of appearance of each DG technology in the Pareto
optimal front can somehow show the appropriateness of each technology for a given distribution system as
shown in Fig. 9.

-~
k=]

Percent of appearance in pareto optimal front (%)
= [~ (4] E- (5]
(=] =] L= f=J (=] (=

Microturbine  Combustion turbine Fuel cell

Fig. 9. Percent of appearance of each DG technology in
solutions of Pareto optimal front

The more a DG technology appears in the solutions of Pareto optimal front the more suitable that
technology is. In the studied network the combustion turbine, micro turbine and finally the fuel cells, are
the best options for investment. The frequency of appearance of each bus in the solutions of Pareto
optimal front shows the appropriate locations for DG placement, as shown in Fig. 10.
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The most frequent bus in the Pareto optimal front is bus # 33 and after that the bus # 15 is the next
appropriate bus for DG investment and so on.

8. CONCLUSION

This paper presents a dynamic multi-objective model for DG planning problem and a GA based method to
solve the formulated problem. The proposed two-step algorithm finds the non-dominated solutions by
simultaneous minimization of active losses, costs and emissions in the first stage and uses a fuzzy
satisfying method to select the best solution from the candidate set in the second stage. The new planning
model is applied to a test system and its flexibility is demonstrated through different case studies. The
solution set provides the planner with an insight into the problem and enables him to choose the best
solution according to planning preferences.

Indices

i,

dg

dl

b4

k.k'

n

t,t'
Constants

DLF,

m
d

DU,
E

E,
ic,
oMC,,

grid

June 2010

NOMENCLATURE

Bus
DG technology
Demand level

Feeder

Objective function
Solution

Year

Demand level factor in demand level dl

Dimension of solutions
Discount rate

Duration of demand level dl
Emission factor of the grid
Emission factor of a dg
Installation cost of a dg

Operation and maintenance cost of a dg

Iranian Journal of Science & Technology, Volume 34, Number B3



322

FC,,

PLF,

T
o

Variables
D
Pi 1.l
grid
Pi 1.l
dg
Pi 1.l
grid
S {dl
dg
S il
4 Lr Al
D
P Jbase

D
base

P
1 lé,d/
FN
GD,
LD,
MD,

})lim
net
P 1 dl

ot
O'ra

n

V.V

max >’ min

A. R. Soroudi and M. Ehsan

Fuel cost of a dg

Price level factor in demand level dl

Planning horizon
Rate of demand growth

Active power demand in bus i, in year t in demand level dl

Active power purchased from grid in year t and demand level dl
Active power injected by a dg in bus i, in year t and demand level dl
Apparent power imported from grid in year t and demand level dl
Apparent power of dg installed in bus i, in year t and demand level dl
Active power losss in year t, in demand level dl

Base active power demand in bus i in first year

Base reactive power demand in bus i in first year
Base price of active power purchased from the grid

Current magnitude of (th feeder in year t and demand level dl

Front number to which nth solution belongs

Global Diversity of nth solution

Local diversity of nth solution in kth objective function

Maximum difference between the values of kth objective function, regarding all solutions
Maximum operating limit of a dg

Net active power injected to bus i, in year t and demand level dl

Net reactive power injected to bus i, in year t and demand level dl
Number of installed units of a dg in bus i in the year t

Number of buses in the network

Number of population

Number of feeders in the network

Number of objective functions

Number of considered demand levels

Pseudo fitness of solution i

Reactive power injected by a dg in bus i, in year t and demand level dl

Reactive power demand in bus i, in year t in demand level dl

Total cost paid to grid
Total installation cost of DG units
Total variable costs of DG units

Upper safe operation thermal limits of substation feeding the network
Upper operation thermal limits of feeders

Upper and lower safe operation limits of voltage
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V. 1d Voltage magnitude in bus i, in year t and demand level dI
o, id Voltage angle in bus i, in year t and demand level dl
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